COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 530</td>
<td>Materials Science</td>
</tr>
<tr>
<td>MSE 533</td>
<td>Polymer & Polymer Based Composites</td>
</tr>
<tr>
<td>MSE 535</td>
<td>Electronic and Photonic Materials</td>
</tr>
<tr>
<td>CHM 545</td>
<td>Mathematical Methods</td>
</tr>
<tr>
<td>MSE 575</td>
<td>Instrumentation for Materials Science</td>
</tr>
<tr>
<td>PHY 580</td>
<td>Quantum Mechanics for Materials Scientists</td>
</tr>
<tr>
<td>MSE 600</td>
<td>Materials Science Seminar I</td>
</tr>
<tr>
<td>MSE 600</td>
<td>Materials Science Seminar II</td>
</tr>
<tr>
<td>MSE 605</td>
<td>Ethics of Scientific Research and Professional Conduct</td>
</tr>
<tr>
<td>MSE 697</td>
<td>Research I</td>
</tr>
<tr>
<td>MSE 698</td>
<td>Research II (Ph. D. only)</td>
</tr>
<tr>
<td>MSE 699</td>
<td>Research III (Ph.D. only)</td>
</tr>
<tr>
<td>MSE 770</td>
<td>Doctoral Qualifying Examination</td>
</tr>
<tr>
<td>MSE 799</td>
<td>Master of Science Thesis Research</td>
</tr>
<tr>
<td>MSE 897</td>
<td>Doctoral Research I</td>
</tr>
<tr>
<td>MSE 899</td>
<td>Doctoral Research II</td>
</tr>
<tr>
<td>MSE 899</td>
<td>Doctoral Research III</td>
</tr>
<tr>
<td>MSE 900</td>
<td>Doctoral Thesis</td>
</tr>
</tbody>
</table>

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 607</td>
<td>Materials for Nanotechnology</td>
</tr>
<tr>
<td>MSE 609</td>
<td>Introduction to Computational Materials</td>
</tr>
<tr>
<td>MSE 635</td>
<td>Optical Materials</td>
</tr>
<tr>
<td>EEN 650</td>
<td>Microelectromechanical Devices</td>
</tr>
<tr>
<td>PHY 653</td>
<td>Solid State Physics</td>
</tr>
<tr>
<td>MSE 640</td>
<td>Organic Optoelectronic Materials and Devices</td>
</tr>
<tr>
<td>EEN 663</td>
<td>Solid State Devices</td>
</tr>
<tr>
<td>PHY 675</td>
<td>Electricity and Magnetism</td>
</tr>
<tr>
<td>MSE 763</td>
<td>Materials and Devices for Solar Energy Conversion</td>
</tr>
<tr>
<td>MSE 704</td>
<td>Thin Film Phenomena</td>
</tr>
</tbody>
</table>

MATERIALS SCIENCE AND ENGINEERING PROGRAM

Center for Materials Research
Norfolk State University | 700 Park Ave., Norfolk, Virginia 23504
Phone: (757) 823-2381 | Fax: (757) 823-9054
https://www.nsu.edu/cmr
E-mail: cmr@nsu.edu

GRADUATE FACULTY

Bahoura, M. J., Professor of Engineering
- Renewable energy harvesting devices
- Energy storage devices
- Multifunctional thin films
- Nanomaterials
- High dielectric materials

Black, Suely, Professor of Chemistry
- Chemistry Education
- Materials Science and Engineering
- Graduate Education

Bonner, Carl E, Professor of Chemistry
- Nonlinear Optical Materials Characterization
- Electro-optic and thermo-optical Materials

Noginov, Mikhail, Professor of Physics
- Optical Spectroscopy
- Nonlinear optics
- Meta-materials
- Nano-plasmonics and lasers

Noginova, Natalia, Professor of Physics
- Magnetization dynamics at nanoscale
- Plasmonics and Spectroscopy
- Coupling of electric, magnetic and optical effects in nanostructured materials

Rakhimov, Rahkim, Professor of Chemistry
- Organic and organo-element free radicals
- Reduction/oxidation processes

Ramash, Greendarajan, Professor of Biology
- Director, Center for Materials Research
- Nano/bio-materials
- Bioelectronics
- Biosensors

Song, Kyo, Professor of Engineering
- Smart optical materials
- Wireless Power Transmission
- Microwave biomaterial interaction

Sun, San-Shajing, Professor of Engineering
- Graduate Program Coordinator, Center for Materials Research
- Organic, polymeric, hybrid or soft materials synthesis and characterization
- Electronic, Optoelectronic, and thermo-electric soft materials and thin film devices

Temple, Doyle, Professor of Physics
- Ultrafast Laser Spectroscopy
- Single Crystal Growth
- Plasmonic Sensors

Yoon, Hargsoon, Associate Professor of Engineering
- Biomedical nano-materials
- Neural sensing
- Nano-electronic materials and devices

www.nsu.edu | An Equal Opportunity Employer
"I have developed transferable skills that I apply every day in my current role as a Materials Process Engineer. I worked across institutions, and on interdisciplinary teams. The program has been instrumental in my sensitivity to team dynamics, through workshops centered around emotional intelligence and relationship management. I now use these experiences to effectively contribute to project deliverables, that require input from various departments and specialties."

Monique Farrell, 2016 Ph.D. Materials Science and Engineering, Norfolk State University.

Currently a Materials Process Engineer III, Northrop Grumman

MiNaC Class 100/1000 Cleanroom
NMR and ESR Labs
Thin Film Lab
Crystal Growth Lab
Materials Characterization Lab
Laser Spectroscopy Lab
Polymer Synthesis and Characterization Lab
Biomaterials and Toxicology Lab

FINANCIAL ASSISTANCE

Teaching Assistantships – provides a stipend, tuition and fees for the academic year. Duties include teaching, grading, laboratory instruction, and educational responsibilities.

Research Assistantships – covers the full calendar year and includes a stipend, tuition, and fees. Recipients work directly with faculty on research projects. Candidates are selected based on academic qualifications, research potential, and recommendations.

ADMISSION REQUIREMENTS

Bachelor's or Master's degree in chemistry, physics, engineering, or related field from an accredited university.

English proficiency based on TOEFL scores or demonstrated working knowledge of the language.

GRE Scores (PhD program)

A completed application will include a statement of purpose, a resume, official transcripts from all schools attended, three or more letters of recommendation, and GRE scores (for Ph.D program applicants).